Opinion Formation under Bounded Confidence via Gossip Algorithms and Applications

Nguyen Thi Hoai Linh1, Takayuki Wada1, Izumi Masubuchi2, Toru Asai3, Yasumasa Fujisaki1

1Osaka University, 2Kobe University, 3Nagoya University
This work is supported by CREST, JST

1 Motivation & Purpose
2 Constant Bounded Confidence Algorithm
3 Clustering Convergence Analysis
4 Numerical simulations
5 Increasing bounded confidence algorithm
6 Applications
Motivation: Public opinion formation
Purpose: Study dynamics of opinion forming in social networks

Considering Problem
We consider a network consisting of n agents. At each time instant agents hold continuous opinions about some issue: $x_i(k)$, $i = 1, 2, \ldots, n$, $k \in \mathbb{N}$.

How agents adjust their opinions while interacting with each other? Which dynamics can result in different formation: Consensus, partial consensus, polarization, fragmentation?
Literature review

Variety of pattern formation → Stubborn Agents

Bounded confidence algorithms

Hegselmann-Krause model

Deffuant-Weisbuch model

\[x_i(k + 1) = \frac{1}{|\mathcal{N}_i(k)|} x_j(k), \quad i \in V, \]
\[\mathcal{N}_i(k, d) = \{ j \in V : |x_i(k) - x_j(k)| \leq d \} \]

Chose \((i, j)\) at \(k\),

\[x_i(k + 1) = \alpha x_i(k) + (1 - \alpha) x_j(k) \]
\[x_j(k + 1) = \alpha x_j(k) + (1 - \alpha) x_i(k) \]
if \(|x_i(k) - x_j(k)| \leq d\).
2. Constant Bounded Confidence Algorithm

\[n \text{-agent network, } V = \{1, 2, \ldots, n\} \]

\[x_i(0) \in \mathbb{R}, \ i \in V: \text{ initial opinion, } \]

\[d: \text{ confidence threshold} \]

\[k = 0 \]

\[k = k + 1 \]

Choose \((i, j)\) with \(p = \frac{2}{n(n-1)} \)

\[|x_i(k) - x_j(k)| \leq d? \]

Yes:

\[x_i(k+1) = x_j(k+1) = \frac{x_i(k) + x_j(k)}{2}, \quad x_l(k+1) = x_l(k), \ l \in V \setminus \{i, j\} \]

No:

\[x_i(k+1) = x_i(k), \quad l \in V \]
2. Constant Bounded Confidence Algorithm

Algorithm in compact form

\[x(k + 1) = W(i(k), j(k), x(k))x(k). \] (1)

Here

\[x(k) = [x_1(k), x_2(k), \cdots, x_n(k)]^T \]

\[W(i, j, x(k)) = \begin{cases} W_{ij}, & \text{if } |x_i(k) - x_j(k)| \leq d, \\ I, & \text{otherwise.} \end{cases} \]

\[W_{ij} = I - \frac{1}{2}(e_i - e_j)(e_i - e_j)^T. \]
3. Clustering Convergence

Lemma 1 (Equilibrium point)
A vector x^* is an equilibrium point of (1), i.e.,

$$x^* = W(i, j, x^*)x^*, \quad \forall i, j \in V$$

(2)

if and only if it has the form

$$x^*_i = x^*_j \text{ or } |x^*_i - x^*_j| > d \quad \forall i, j \in V.$$

(3)

Lemma 3

Given $\varepsilon_0 = d/(n - 1)$,

$$\mathbb{P}(\Omega) = 1,$$

$$\Omega = \bigcup_{k_0 \in \mathbb{N}} \left\{ \exists \bar{k} \leq k_0 \text{ s. t. } \forall i, j \in V, \right. \left. \left|x_i(\bar{k}) - x_j(\bar{k})\right| \leq \varepsilon_0 \text{ or } \left|x_i(\bar{k}) - x_j(\bar{k})\right| > d \right\}. $$
3. Clustering Convergence

For each \(x(k) \), we equip the network with a graph

\[G(x(k)) = (V, E(k)), \]

where

\[(i, j) \in E(k) \iff |x_i(k) - x_j(k)| \leq \varepsilon_0. \]

Definition 1. (\(d \)-clusters)

The clusters \(V_1(k), V_2(k), \ldots, V_{G_d}(k) \) induced from connected components of \(G(x(k)) \) are \(d \)-clusters if

(i) \(\text{dia } V_p(k) := \max_{i, j \in V_p(k)} |x_i(k) - x_j(k)| \leq d \quad \forall p \), and

(ii) \(\text{dist} (V_p(k) - V_q(k)) := \min_{i \in V_p(k), j \in V_q(k)} |x_i(k) - x_j(k)| > d \quad \forall p \neq q. \)
3. Clustering Convergence

Theorem 4.
For any initial opinion profile and a given confidence threshold, with probability one, the opinion profile is partitioned into d-clusters within finite step.

Theorem 5.
Consider d-cluster $V_1(0)$ with $|V_1(0)| \leq d$. The constant bounded confidence algorithm drives the opinions of all agents to their average $(1^T x(0))/m$ almost surely.
3. Clustering Convergence

Definition 2. (Clustering convergence)

Given a parameter $d > 0$. An algorithm given by

$$x(k + 1) = f(x(k)) \quad \text{for } k = 0, 1, 2, \ldots$$

is said to achieve d-clustering convergence if starting from any initial state, the system eventually converges to some state x^* of form (3), i.e.,

$$\lim_{k \to \infty} x(k) = x^*.$$

Theorem 6

Given a confidence threshold d. For any initial opinion profile, Algorithm1 achieves d-clustering convergence almost surely.

Theorem 8. (Upper bound of clusters)

Given $x(0) \in [0, 1]^n$, $c \in \{1, 2, \ldots, n\}$, if $d \geq 1/c$, then for any sample path of choosing interaction pairs, the number of clusters formed is at most c.

Nguyen Thi Hoai Linh et al.
COOP Workshop, Osaka
4. Numerical Simulation

\[n = 100, \ x = i(0) \in (0, 1) \text{ uniformly.} \]

\[d = 0.14 \quad \text{and} \quad d = 1 \]
5. Increasing Bounded Confidence Algorithm

\(n \)-agent network, \(V = \{1, 2, \ldots, n\} \)

\[c^* : \text{desired number of clusters}, \]
\[x^* = x(0), \]
\[d = 0, \delta d : \text{threshold's increment}, \]
\[\kappa : \text{maximum number of steps} \]

Supervisor calculate \(c(x^*) \):
number of clusters in \(x^* \)

\[c(x^*) > c^*? \]

- no \(\rightarrow \) Stop
- yes \(\rightarrow \)

\[x^* = x(\kappa) \]

Constant bounded confident algorithm with
\[x(0) = x^*, \]
\[d = d + \delta d, \kappa \]
Theorem 10.

$c(l)$, which is the number of clusters in $x^*(l)$, is a non-increasing function of l with high probability.

Example

$\delta d = 0.001$, $c^* = 5$. Final confidence threshold $d = 0.14$.

Figure: Increasing confidence threshold with increment 0.001.
We consider the applications of the algorithms in the problem of clustering multi-dimensional data and intrusion detection.

Clustering Problems
Given a set of data points, usually in high-dimensional space, partition them into clusters so that:

- Points within each cluster are similar to each other.
- Points from different clusters are dissimilar.
6. Applications

n data objects each of which has d attributes
↔ Multi-agent system $\mathcal{V} = \{1, 2, \ldots, n\}$, $\mathbf{x}_i(0) \in \mathbb{R}^d$

\[
X(k) := \begin{bmatrix}
\mathbf{x}_1(k) & \mathbf{x}_2(k) & \cdots & \mathbf{x}_n(k)
\end{bmatrix}^T \in \mathbb{R}^{n,d}
\]

\[
W(i, j, X(k)) := \begin{cases}
I - \frac{1}{2}(e_i - e_j)(e_i - e_j)^T, & \text{if } \|X_i(k) - X_j(k)\| \leq \delta, \\
I & \text{otherwise.}
\end{cases}
\]
Constant confidence threshold ⇒ Core for clustering-based distributed outlier/anomaly detection in power distribution systems.

Increasing confidence threshold
7. Conclusions

We have studied two algorithms for the dynamics of opinion formation and given a rigorous convergence analysis. The algorithms are

- distributed
- asynchronous
- gossip

The algorithms express the variety of opinion formation: consensus, clustering, fragmentation which are observed frequently in social network.

- have potential to be used as cores of clustering-based distributed outlier/anomaly detection protocol in networks or computer systems, such as power distribution systems.