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Abstract—This paper initiates a study toward developing and
applying randomized algorithms for stability of high-speed com-
munication networks. The focus is on congestion and delay-based
flow controllers for sources, which are “utility maximizers” for in-
dividual users. First, we introduce a nonlinear algorithm for such
source flow controllers, which uses as feedback aggregate conges-
tion and delay information from bottleneck nodes of the network,
and depends on a number of parameters, among which are link
capacities, user preference for utility, and pricing. We then lin-
earize this nonlinear model around its unique equilibrium point
and perform a robustness analysis for a special symmetric case
with a single bottleneck node. The “symmetry” here captures the
scenario when certain utility and pricing parameters are the same
across all active users, for which we derive closed-form necessary
and sufficient conditions for stability and robustness under param-
eter variations. In addition, the ranges of values for the utility and
pricing parameters for which stability is guaranteed are computed
exactly. These results also admit counterparts for the case when
the pricing parameters vary across users, but the utility parameter
values are still the same. In the general nonsymmetric case, when
closed-form derivation is not possible, we construct specific ran-
domized algorithms which provide a probabilistic estimate of the
local stability of the network. In particular, we use Monte Carlo
as well as quasi-Monte Carlo techniques for the linearized model.
The results obtained provide a complete analysis of congestion con-
trol algorithms for internet style networks with a single bottleneck
node as well as for networks with general random topologies.

Index Terms—Communication systems, congestion control, dis-
tributed control, Monte Carlo methods, pricing, robustness.

I. INTRODUCTION

H IGH-speed communication networks recently received
growing attention in the control literature, as evidenced

by the appearance of several special issues devoted to this topic
in leading journals in the field, such as [1], [2], and [3]. Various
approaches and solutions have been developed and studied in
this context, including modeling of TCP/IP traffic, congestion
control for available bit rate (ABR) service in asynchronous
transmission mode (ATM) networks, packet marking schemes
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for the Internet, application of low-order controllers for active
queue management (AQM) as well as related problems.

One of the critical issues that lie at the heart of efficient opera-
tion of high-speed networks is congestion control. This involves
the problem of regulating the source rates in a decentralized and
distributed fashion, so that the available bandwidths on different
links are used most efficiently while minimizing (or totally elim-
inating) loss of packets due to queues at buffers exceeding their
capacities. All this has to be accomplished under variations in
network conditions such as packet delays (due to propagation
as well as queueing) and bottleneck nodes. This paper addresses
this challenge, using randomized algorithms, within the context
of a model introduced in [4], which is based on noncooperative
game theory [5], and captures all the elements and features men-
tioned previously.

The congestion control problem and modeling of the Internet
has been a very active research area in recent years. Modeling
and analysis of congestion control algorithms have been the
focus of this research after the introduction of the transfer con-
trol protocol (TCP) [6] and the mathematical models in [7] and
[8], which pose the underlying resource allocation in congestion
control as an optimization problem. Subsequent studies have
proposed and analyzed various primal, dual, and primal-dual
algorithms [9]–[14] building on this foundation. For a compre-
hensive summary of the results in this area, we refer to [15].

The original model utilized in this paper can be classified as
a primal-dual algorithm [16]. It is nonlinear and in continuous
time (CT), but we work here with a discrete-time (DT) version
of it as any implementation of the CT model will inevitably
involve a discretization synchronized with the round trip time
(RTT) of packets. The DT model is also nonlinear, and depends
on a number of parameters representing pricing, utility (to in-
dividual users), and link capacities. It has a unique equilibrium
state for each set of values of these parameters, and the objec-
tive is to establish stability in a region of the parameter space
taken as large as possible. The presence of the nonlinearities in
the DT model makes it impossible to obtain a global stability re-
sult (even though this is possible for the CT version [4]), which
forces us to study the linearized version around the equilibrium
state, which is also of independent interest. Although there exist
a small number of studies in the literature that investigate sta-
bility of linear and nonlinear primal or dual DT models, the anal-
ysis of the primal-dual DT model we focus on is novel to the
best of our knowledge. The goal, then restated, is to establish
local stability and robustness (to parameter variations) of this
DT model.

However, even this goal cannot be accomplished analytically,
due to nonlinear dependence of the linearized model on the key
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system parameters, except in some special cases. One such sce-
nario is the so-called user-symmetric case, which corresponds
to the situation when certain utility network parameters are all
equal. For the more general case one has to resort to other (non-
analytic) tools, among which the approach using randomized
algorithms [17], [18] stands out as a strong contender.

The study of randomized algorithms for analysis and design
of control systems has aroused considerable interest in the sys-
tems and control community [17]. They are efficient and low-
complexity algorithms, and are useful especially when worst
case analysis of complex systems is either very difficult or im-
possible. Unlike more classical methods, these algorithms yield
an assessment on the satisfaction of required specifications with
a certain probabilistic accuracy. They provide an alternative so-
lution with a tradeoff between computational complexity and
tightness of the solution.

Randomized algorithms heavily rely on univariate and mul-
tivariate methods for sample generations in various sets [19].
Roughly speaking, sample generation techniques can be divided
into two main categories: Monte Carlo [20] and quasi-Monte
Carlo [21]. While the former is classical, statistical-based, and
assumes an a priori knowledge of probability density functions,
the latter may be regarded as its deterministic counterpart. The
main objective of quasi-Monte Carlo methods is to reduce the
“discrepancy” between the generated samples, and a secondary
objective is to avoid the curse of dimensionality that arises in
gridding or rejection methods. Specific comparisons between
these methods have already been performed in different areas,
including the computation of path integrals in mathematical fi-
nance [22], and the analysis of various motion planning prob-
lems [23]. Even though quasi-Monte Carlo methods may be
more suitable in certain situations, a definitive conclusion is
not yet available. Therefore, one of the contributions of this
paper is to provide additional insight in this direction for net-
working problems-an unexplored domain for randomized algo-
rithms. The results obtained turn out to be very appealing from
a networking point of view, as they carve out a sufficiently large
region in the parameter space where local stability is ensured,
implying that both flow rates of individual users and delays on
links leading to bottleneck nodes stay around their equilibrium
values which also admit the interpretation as Nash equilibrium
when the number of users is sufficiently large.

The paper is organized as follows. In Section II, we present
the general network model and the congestion control algo-
rithm. An analytical local stability analysis of the single bot-
tleneck node case with symmetric users is given in Section III.
In Section IV, we give a brief account of randomized algorithms
and discuss their use in the present context. In Section V, numer-
ical results are presented for stability of the linearized system
first for a single bottleneck node and subsequently under gen-
eral network topologies. Conclusions are then provided in Sec-
tion VI.

II. MODEL

A. Network Model

We consider a somewhat simplified version of a general net-
work model based on fluid approximations introduced in [4].

Fluid models which replace discrete packets with continuous
flows are widely used in addressing a variety of network con-
trol problems such as congestion control [9], [24], [25], routing
[24], [26], and pricing [8], [27], [28]. The topology of the net-
work studied here is characterized by a set of nodes and a
set of links , with each link having a fixed capacity

0, and an associated buffer size . There are
users, with the users set denoted by . Each
user is associated with a unique connection between a source
and a destination node. The connection is a path that connects
various nodes, which can also be viewed as a subset of . The
nonnegative flow, , sent by the th user over this path satisfies
the bounds . The upper bound, , on the th
user’s flow rate may be a user specific physical limitation.

It is possible to define a routing matrix, , as in [8], that
describes the relation between the set of routes associated
with the users (connections) and links

if source i uses link
if source i does not use link

(1)

for and . Using the routing matrix , we have the
inequality

(2)

where is the flow rate vector of the users and is
the link capacity vector. If the aggregate sending rate of
users whose flows pass through link exceeds the capacity
of the link, then the arriving packets are queued (generally on a
first-come first-serve basis) in the buffer of the link. Let the
total flow on link at any time be given by

(3)

Ignoring boundary effects, the buffer level at link evolves ac-
cording to

(4)

where denotes the partial derivative .

B. Cost Function

An important indication of congestion for Internet-style net-
works is the variation in queueing delay , defined as the dif-
ference between the actual delay experienced by a packet
and the propagation delay of the connection. If the incoming
flow rate to a router exceeds the capacity of the outgoing link,
packets are queued (generally on a first-come first-serve basis)
in the corresponding buffer of the router, leading to an increase
in the round-trip time (RTT) of packets. Hence, RTT on a con-
gested path is longer than the base RTT, which is defined as
the sum of propagation and processing delays on the path of a
packet. The queueing delay at a link can be modeled as

(5)

where the capacity of link , and the total flow
on the link. Thus, the queueing delay that a user experiences



ALPCAN et al.: RANDOMIZED ALGORITHMS FOR STABILITY AND ROBUSTNESS ANALYSIS 1231

is the sum of queueing delays on its path, that is
.

Remark II.1: We ignore the positive projections in (4) and
(5) due to the fact that we focus on local analysis and the point
of interest is inside the boundaries.

We make use of variations in RTT to devise a congestion con-
trol and pricing scheme. The cost function for the th user at
time is the difference between a linear pricing function propor-
tional to the queueing delay the user experiences and a strictly
increasing logarithmic utility function multiplied by a user pref-
erence parameter

(6)

The utility function models the user’s demand for bandwidth. It
is strictly increasing and concave in accordance with the prin-
ciple of diminishing returns. The pricing function is propor-
tional to variations in the RTT a user experiences. A similar ap-
proach has been suggested in a version of TCP, known as TCP
Vegas [29] as an ad hoc improvement over TCP Reno [30].

The users pick their flow rates in a way that would minimize
their cost functions (and in this sense we have a noncooperative
game), and consistent with this goal we adopt a dynamic update
model whereby each user changes his flow rate proportional to
the gradient of his cost function with respect to his flow rate.
Thus, the algorithm for the th user is

(7)

where we have ignored the effect of the th user’s flow on the
delay that s/he experiences. This assumption can be justified
for networks with a large number of users.

In a realistic implementation of the algorithm, the users
update their flow rates only at discrete time instances corre-
sponding to multiples of RTT and, hence, we discretize the
reaction function of the th user, and normalize it with respect
to the RTT of the user. The optimal user response is, therefore,
a DT version of (7), and is given by1

(8)

where is a (user specific) step-size constant which will be
taken to be 1 for the rest of the paper, which is no loss of gen-
erality since it can be absorbed into the other parameters and

. Furthermore we take , without any loss of
generality. The queue model is discretized in a similar manner,
with the queueing delay at link being [as a discretized version
of (5)]

(9)

with .

1We have abused the notation here, as t here does not correspond to the t in
the CT description. Since the CT description will not be used in the rest of the
paper, this should not create any ambiguity or confusion.

III. STABILITY ANALYSIS: THE SYMMETRIC SINGLE

BOTTLENECK CASE

Let us consider the case of a single bottleneck node, with
users having connections passing through that node. Hence, we
have essentially a single link of interest, for which we denote
the associated delay by (that is without the subscript ‘ ’), and
likewise the associated capacity by . Then, the equilibrium
state of the system described by (8) and (9) follows readily as:

(10)

which is unique.
Let , and . The

system (8)–(9) with a single bottleneck link and with
can now be rewritten around the equilibrium state as

(11)

Let denote the -dimensional column vector whose entries
are the ’s. Likewise let the -dimensional column vector
whose entries are the ’s be denoted by . Linearizing (11)
around , we obtain

(12)

Let

and

where (13)

The system equations (12) can then be expressed in matrix form

(14)

where

...
. . .

...
(15)

Hence, the system (11) is locally asymptotically stable if and
only if is Schur, that is all its eigenvalues,

, are in the open unit circle. The goal now is to find
the region in the parameter space (with the parameters being

, and ), such that 1. We consider first the
special case of symmetric users having the same pricing and
utility preference parameters, that is and for all
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, which also implies that for all . When the
number of users is two, 2, one can explicitly determine
the eigenvalues of the matrix . They are given by

(16)

which are in the open unit circle if and only if

The lemma below and the proposition that follows generalizes
this result to users.

Lemma III.1: If the user preference parameters and prices are
symmetric across all users, that is and (which
further implies that ), then the characteristic equation of
the matrix is given by

(17)

Thus, has real eigenvalues at and two possibly
complex eigenvalues at

Proof: The lemma is proven by induction. It is already
shown in (16) that the statement holds when 2. Next, we
assume that the statement holds for a given , say ,
and prove that it also holds for . Now note that

Thus, the given expression for the characteristic equation holds
for and, hence, for all .

We now determine the region in the parameter space where
is Schur matrix. It readily follows from the lemma that the

condition 0 2 is both necessary and sufficient for
real roots to be in the open unit circle. On the other
hand, the remaining two possibly complex roots of (17) have
their absolute values strictly less than one, 1, if and only
if the following holds:

Combining this with the earlier condition 0 2, we arrive
at the following necessary and sufficient condition for local sta-
bility of the equilibrium state of system (11) in the symmetric
user case

This, in turn, is equivalent to the condition

(18)

We summarize this result in the following proposition.
Proposition III.2: If the user preference parameters and

prices are symmetric across all users (that is,
and , which further implies that ), the single
bottleneck system given by (11) is locally stable around its
equilibrium state (10) if and only if the parameters , and
lie in the region

Remark III.3: If the capacity of the link is linearly propor-
tional to M (that is, M, for some positive constant ),
then the necessary and sufficient condition becomes

The condition in Proposition III.2 can also be expressed in
terms of the user preference parameter , together with the
pricing parameter and capacity . First note the relationship

which readily follows from (10) and (13) by taking , and
independent of the user index . In view of this relationship

between and , we immediately have the following corollary
to Proposition III.2.

Corollary III.4: For the symmetric parameter case, the single
bottleneck system given by (11) is locally stable around its equi-
librium state (10) if and only if the parameters , and lie
in the region

Finally, we generalize Proposition III.2 by removing the sym-
metry in the pricing parameter , while retaining the symmetry
in .

Proposition III.5: Let the parameter be symmetric across
all users, , while the pricing vector
be general. Then, the characteristic equation of the matrix is
given by

(19)

The matrix has real eigenvalues at and two
possibly complex eigenvalues at
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Furthermore, the single bottleneck link system given by (11) is
locally stable around its equilibrium state (10) if and only if the
parameters , and lie in the region

Proof: The proof follows from the those of Lemma III.1
and Proposition III.2, by simply replacing with .

IV. RANDOMIZED ALGORITHMS AND STABILITY ANALYSIS FOR

THE NONSYMMETRIC CASE

We have seen in the previous section that local stability and
robustness can be studied analytically (because the eigenvalues
of can be computed explicitly) when the user utility prefer-
ence parameters, ’s, are the same for all users (or equivalently
when the ’s are the same). If this is not the case, however,
then the eigenvalues of cannot be expressed in closed form,
making it very challenging (if not impossible) to deduce any
reasonable stability and robustness results using analytical tech-
niques. Then, one has to resort to numerical-based or simula-
tion-based methods, and as mentioned earlier randomized algo-
rithms stand out as the most promising. However, before trying
out randomized algorithms on the problem at hand, we first pro-
vide, in this section, a general introduction to the topic for the
uninitiated reader. This section also serves to introduce the con-
ceptual framework and the terminology, which will be utilized
in the next section.

A. Monte Carlo Methods

In Monte Carlo methods, the first step is to take the param-
eter vectors and to be random with given probability density
functions and , having support sets and , respec-
tively. We can take, for example, and to be the hyper-rect-
angular sets

and the density functions and to be uniform on these sets.
That is, for

if

otherwise
(20)

and

if

otherwise
(21)

Then, we generate independent identically distributed (i.i.d.)
vector samples from the set according to the density
function , respec-
tively. Subsequently, using (15) we compute for

, where we have suppressed the dependence on
.
The next step is to construct the indicator function

if is Schur
otherwise

The estimated probability of stability is readily given by

(22)

which is equivalent to

where is the number of vector samples such that
is a Schur matrix. The estimate is usually referred

to as empirical probability.
Clearly, for a finite sample size, it is important to know how

many samples are needed to obtain a “reliable” probabilistic
estimate . To this end, classical results, such as the Chernoff
bound can be used. The Chernoff bound [31] states that for any

and if

(23)

then, with probability greater than , we have
, where denotes the real probability of stability. It is im-

portant to remark, however, that the number of required vector
samples is independent of the problem dimension, e.g., of the
size of the matrix and of the number of users, .
Hence, this problem independent explicit bound which can be
computed a priori [17], [18].

As pointed out in Section I, an important issue in Monte Carlo
methods is the development of efficient algorithms for sample
generation in various sets according to different distributions. In
particular, the problem is how to efficiently generate vector
samples according to the given densities and , and
support sets and .

For univariate density functions, this specific problem is
equivalent to the one of generating uniform random numbers in
the interval [0, 1]. Good random number generators are required
to provide uniform and independent samples and they should
be also reproducible and fast. It is well-known that computer
methods for random generation produce only pseudorandom
sequences, which may show cyclicities and correlations. The
problem of univariate random number generation constitutes
a whole field of study in its own. As a starting point for the
reader interested in further details, we refer to [31] and [32]. We
note that, even though this is a well-established topic, current
research is performed with the objective to produce extremely
fast and reliable algorithms for various applications including,
in particular, cryptography.

The case of multivariate distributions is definitely more
difficult. For general distributions and support sets, rejection
methods can be used [33]. There are two kinds of rejection
methods: The first one is based on the concept of rejection from
a “dominating density.” The second class of methods may be
used for uniform densities and it performs rejection from an
overbouding bounding set. These two methods are obviously
related and a critical issue in both is their efficiency since the re-
jection rate may be exponential. Alternatively, adaptive Monte
Carlo methods based on Markov Chains or Metropolis-like
algorithms may be utilized but the critical issue is the rate of
convergence, which may be slow.
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Fig. 1. First 500 samples of various two-dimensional quasi-random sequences. (a) Halton. (b) Sobol. (c) Niederreiter. (d) Uniformly distributed pseudorandom
sequence.

B. Quasi-Monte Carlo Methods

In the case of quasi-Monte Carlo methods, the empirical prob-
ability can still be computed using the indicator function and
(22) but the sample generation is obtained in a completely dif-
ferent way. That is, no probability density functions and
are specified or used and the samples are generated according
to a purely deterministic mechanism. Therefore, the sequences

and are now quasi-random and
are chosen in order to minimize the so-called discrepancy, which
is a measure of how “uniform” a sample set is distributed within
a given set.

Formally, the discrepancy of a sample set of
cardinality

is defined as [21]

Vol (24)

where is any subset of Vol is the volume of and
denotes the cardinality of a set.

The idea is to “cover” the set as uniformly as possible
for a given sample size. One can ask, on the other hand, why
a simple uniform grid providing low discrepancy is not pre-
ferred. Even though the apparent randomness of quasi-random
sequences may be attractive for various reasons, the main ben-
efit is to avoid the curse of dimensionality which is inherent to
gridding techniques. That is, as the dimension of the parameter
space increases, the number of samples required to cover the set

with a uniform grid grows exponentially. On the other hand,
the advantage is that the number of samples in the quasi-Monte
Carlo method is independent of the problem dimension, exactly
as in the Monte Carlo method. Various classical low-discrep-
ancy sequences are available in the literature, including Halton,
Sobol, Niederreiter and others. Some plots showing specific
generations are shown in Fig. 1. Finally, we would like to men-
tion that discrepancy is not the only criterion used. For example,
the so-called dispersion, which is a normalized lower bound on
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the discrepancy, is also studied. We do not further dwell on this
issue, but we refer to [21] and [23] for additional details.

V. SIMULATION RESULTS

In Section III, we have investigated the range of values for
the parameters for which the system is locally stable in
the special symmetric parameter case. This analytical approach,
however, cannot be further generalized, as it becomes extremely
difficult to find a closed-form expression for the eigenvalues of
the matrix . The uncertainty in the general case consists of
nonlinearly coupled parameters even in the single bottleneck
link case as shown in (15). Therefore, the use of randomized
algorithms instead of classical worst case analysis is a natural
choice for investigating the robustness of the system at hand.
For the remainder of the paper, the term stability will be used in
the probabilistic sense, referring to probability of stability, or its
deterministic counterpart [17] if quasi-Monte Carlo is used.

In order to gain further insight into the properties of , the
eigenvalues of a single 20-dimensional randomly generated
sample matrix are calculated and shown in Fig. 2. We note
that is ill-conditioned with a condition number in the order
of .

We next investigate stability properties of the linearized
single bottleneck link system (12) through simulations, and
then generalize the simulations to cover multiple bottleneck
systems. Our main goal is to investigate the effect of pricing
and user parameters on local stability of the system.

A. Single Bottleneck Link With Multiple Users

We have seen earlier in Section III, that it is possible to study
local stability and robustness in two different parameter spaces,
namely and , where the former admits an in-
terpretation in terms of the original model, whereas the latter is
just a transformation which was introduced for convenience. In
any analytical study, such as the one in Section III, it does not
make any difference whether one works with the former or the
latter, since there is a one-to-one transformation between the two
parameter spaces. In the case of randomized algorithms, how-
ever, it does make a difference, since the distribution one uses
for one space does not necessarily correspond to the one used
for the other. For this reason we carry out the analysis with ran-
domized algorithms in both parameter spaces.

For the case of a single bottleneck link network, we first study
local stability and robustness in the parameter space

The matrix in question is (15), which is expressed in terms of
’s, which however can be expressed in terms of ’s through

(13).
Subsequently, we carry out the study in the parameter

space, where the vector is now

In both cases, we use not only Monte Carlo methods as the prob-
abilistic model for the system, but also quasi-Monte Carlo se-
quences like, Halton, Sobol, and Niederreiter in order to-pre-

Fig. 2. Eigenvalues of a single 20-dimensional randomly generated sample L
matrix on complex plane.

sumably-obtain a better coverage of the -dimensional
parameter space.

1) Parameter Space: We first simulate the effect of
bottleneck link capacity on the local stability of the system
for various values of and . In this simulation we use Monte
Carlo, quasi-Monte Carlo and grid methods together, which en-
ables us to compare the performance of these methods. Note that
the grid method is the most reliable one as it covers the param-
eter space deterministically. However, it is prohibitive due to its
computational complexity in higher dimensional systems. Due
to this limitation, we simulate a system with four users only.

For all methods, the parameter ranges 0 0.2 and
0 20000 , are chosen with 100% tolerance
around their nominal values. For the probabilistic model for pa-
rameters, we use a uniform distribution. We choose a level of
confidence 0.001 and accuracy 0.008. Using the Cher-
noff bound given in (23) we determine the minimum sample
size: 59383.To simplify the grid construction we choose

65536, which guarantees for the Monte Carlo simulation
with probability greater than 0.999 that 0.008.
Then, on the unit interval [0, 1], the grid is constructed through
points spaced as in each dimension.
Results of this simulation are shown in Fig. 3. We observe that
the system is locally stable only for a certain range of capacity

. Considering the analysis for the symmetric case given in
Corollary III.4, this result aligns with the theoretical predictions.

We have observed a series of simulations that all of the imple-
mentations of quasi-Monte Carlo algorithms that we use have
limitations as dimension of the system increases. The imple-
mentations of quasi-Monte Carlo algorithms that we use, for di-
mensions higher than 16, output sequences with a very specific
pattern, which produces unreliable results. Hence, for a large
number of users, we limit our analysis to Monte Carlo methods
only.

Finally, we investigate the robustness of the system with re-
spect to various user and pricing parameters given a fixed ca-
pacity at the bottleneck link. For each case, the user and pricing
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Fig. 3. Stability versus capacity (logarithmic scale) for M = 4 users using
Monte Carlo, quasi-Monte Carlo, and grid methods. Parameters have 100%
tolerance around nominal values.

Fig. 4. Stability versus parameter ranges for M = 20 users. Parameters have
100% tolerance around nominal values.

parameters are uniformly distributed with up to 100% toler-
ance around their nominal values. The capacity of the system
is chosen as 200000, and number of users 20.
We choose the number of samples as 100000, which
easily guarantees a level of confidence 0.001 and accuracy

0.007. We observe in Fig. 4 that local stability decreases as
nominal values of and increase. As before, this observation
is in line with the analytical results given in Corollary III.4.

2) Parameter Space: We now carry out the preceding
analysis in the parameter space. As noted earlier, the

space is a nonlinear transformation of the space,
and, hence, any sample distribution in the former corresponds
to some other sample distribution in the latter.

We first look at the effect of capacity. We simulate a system
with again four users. For all the methods, the parameter ranges
are taken to be 0 1 and 0 1000 .
As the probabilistic model for parameters, we use a uniform

Fig. 5. Stability versus capacity for M = 4 users using Monte Carlo,
quasi-Monte Carlo, and grid methods. Parameter ranges are 0 < � < 1 and
0 < � < 1000; i = 1; . . . ; 4.

Fig. 6. Closer look at Fig. 5.

distribution. The grid is constructed through points spaced as
in each dimension, where

is 1 for and 1000 for . The number of samples is then
, which guarantees a level of confidence 0.001 and

accuracy 0.004 for the Monte Carlo simulation. Results
of this simulation are shown in Fig. 5, and a close-up version
in Fig. 6. We observe that the stability of the system improves
as capacity increases as indicated by the condition (18) and
analytical results in Propositions III.2 and III.5.

In the next simulation, we investigate robustness of the
system with respect to a range of parameters using
uniform random distribution within the ranges [0, 1] for
and [0, 1000] for . The capacity of the system is chosen
as 25000, and number of users 20. The number
of samples is 100000 ensuring a level of confidence

0.001 and accuracy 0.007. We observe in Fig. 7 that
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Fig. 7. Stability versus parameter ranges forM = 20 users using a uniform
random distribution within the range.

local stability degrades as the ranges of ’s and ’s increase
confirming analytical results in Propositions III.2 and III.5.

B. General Network Topology

We now turn our attention to local stability and robustness of
a general topology network with multiple bottleneck links, and
routing matrix as described in (1). The system equations are
given in (8) and (9). For this general case, equilibrium point or
points of the system cannot be described explicitly. Therefore,
we first investigate the uniqueness of the equilibrium state. To-
ward this end, we assume that is a full row rank matrix with

which is in fact no loss of generality as nonbottleneck
links on the network have no effect on the equilibrium point,
and can be safely left out. The following proposition can also
be found in [4] and is included here for completeness.

Proposition V.1: When is full row rank, the system de-
scribed by (8) and (9) has a unique equilibrium.

Proof: The equilibrium state of the system described by
(8) and (9) is

(25)

(26)

where is the delay vector at links, and the
nonlinear vector function is defined as

Multiplying (26) from left by yields

Since is of full row rank, the square matrix is full
rank and, hence, invertible. Thus, for a given flow vector and
pricing vector

(27)

is unique. Furthermore, we conclude that there is at least one
equilibrium solution, which satisfies (25) and (26).

We next establish the uniqueness of the equilibrium. Sup-
pose that there are two different equilibrium points,
and . Then, from (25) it follows that:

Similarly, from (26) we have

Multiplying this with from left we obtain

We rewrite this as

Since ’s are strictly concave, each term (say the th one) in
the summation is negative whenever with equality
holding only if . Hence, we conclude that has to be
unique, that is

From this, and (8)–(9), it immediately follows that
, are unique. This does not however immediately imply

that , are also unique, which in fact may not be
the case if is not full row rank. The uniqueness of ’s, how-
ever, follow from (27), where we obtain a unique for a given
equilibrium flow vector

As a result, , obtained from (25) and (26) constitutes a
unique equilibrium point for the system (8)–(9).

Let for the th user and
for the th link, given the existence of a unique equilibrium

point, . The system (8)-(9), with 1, can be rewritten
around the equilibrium state as

(28)

where . Linearizing the system (28)
around the equilibrium point , we obtain

(29)

which can be described in matrix form as

For the system (28) to be locally stable around the equilib-
rium, the eigenvalues of the matrix have to be in the open
unit circle, or 1. We next study this condition only in the

parameter space. The reason why we do not consider the
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Fig. 8. Network diagram for Example V.B.2.

space is because the entries of the matrix in that case de-
pend also on the equilibrium state, which however cannot be ex-
pressed in closed form in terms of the system parameters, since
it is the solution of a set of nonlinear equations.

1) Parameter Space: We analyze the local stability
and robustness of the linearized system (29) in space,
defined by the vector

In addition, connections between users as described by the
routing matrix can also be taken as a variable, extending the
parameter space to that described by the extended vector

In this extended space, we study stability of the network under
all possible routing configurations for a given number of users
and nodes.

2) Illustrative Example: We first study at the effect of ca-
pacity on stability of the linearized system (V.B) using an illus-
trative example with three users and two links. The number of
users and links is chosen small in order to be able to visualize
the results. The routing matrix is fixed in this example, and is
given by

The corresponding network configuration is shown in Fig. 8.
The matrix for this example can now be written out explicitly
as

As in previous simulations, the parameter ranges are chosen
as 0 1 and 0 , and a uniform distribu-
tion within the given range is used as the probabilistic model
for the parameters. Capacities of the links are varied exponen-
tially from to . Results of the simulation are shown in
Fig. 9. We observe that probability of stability increases with

Fig. 9. Probability of stability for various capacities of links for the network
in Example V.B.2.

Fig. 10. Network topology with 12 users and five links with capacities
[35 50 30 15 20]10 .

Fig. 11. Network stability for various ranges of parameters under the arbitrary
network topology given by Fig. 10.

increasing capacity of the links, which is consistent with earlier
results on the single bottleneck link case.

3) Simulations Under General Network Topologies: We
next simulate the system under an arbitrary network topology
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Fig. 12. Ns-2 simulations depicting flow rates of selected users sharing a bottleneck link under (a) low and (b) medium delays. Flow rates of three users on the
linear network of Fig. 8 under (c) low and (d) medium delays.

described by the routing matrix given in the following with
five links and 12 users:

It is in fact possible to repeat this simulation for arbitrarily large
networks. The network structure adopted for this particular sim-
ulation is shown in Fig. 10. We investigate the local stability of
the system for different parameter ranges varying from 0.1 to
1 for and from 100 to 1 000 for . A uniform distribution is
used as probabilistic model within each given range of param-
eters. Capacities of the links are arbitrarily fixed to
values . As a result of computational con-
straints, the number of samples is chosen to be 10000,
which guarantees a level of confidence 0.001 and accuracy

0.02. As we observe from Fig. 11, results are comparable
to the ones obtained for the single bottleneck link case.

Finally, we investigate robustness of the linearized system to
different routes. The number of users and links are the same
as in the previous simulation. However, the routing matrix and,
hence, the topology and routes in the network, are generated
randomly in addition to the parameters which are generated
using a uniform distribution within the ranges 0 1
and 0 1000 . The number of different
topologies randomly generated is 50, and number of samples
per topology is chosen as 5000 ensuring a level of confidence

0.001 and accuracy 0.03. We observe that the system
is stable with a probability of 0.70. If we increase the capacities
of the links tenfold to , however, the prob-
ability of stability increases to . These observations are con-
sistent with earlier simulation and analytical results obtained.

As noted earlier, any simulation in the space is not fea-
sible under general network topologies with multiple bottleneck
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links, as the explicit calculation of the unique equilibrium state
requires the solution of a set of nonlinear equations.

C. Packet Level Simulations

We investigate and demonstrate the results observed in nu-
merical simulations through realistic packet level simulations
using the ns-2 network simulator [34]. The model considered in
this paper does not take feedback delays into account in order
to maintain tractability of the already complicated model and
be able to provide analytical results. On the other hand, we do
realize that feedback delays play a nonnegligible role in net-
work control problems [4], [15], [35]. Accordingly, we inves-
tigate the effects of feedback delays on stability by simulating
both the low (1 ms) and medium (10 ms) delay scenarios on
the ns-2 simulator. We first simulate the case of a single bot-
tleneck link of capacity shared by 20 identical users
with parameters 0.5 and 20000, which are consistent
with earlier parameter choices. We observe in Fig. 12(a) that the
system is stable under 1-ms delay consistent with earlier simu-
lation results. While the system is unstable under 10-ms delay as
shown in Fig. 12(b) the variations in flow rates are small enough
for practical purposes. Next, we simulate the linear network
(Fig. 8) with three users analyzed in the illustrative Example
V.B.2. The parameters are chosen as 500 and 10000
similar to the ones in the example. Both of the link capacities
are . The flow rates of users are depicted in
Fig. 12(c) for low (1 ms) link delays and Fig. 12(d) for medium
(10 ms) link delays, respectively. Again the results are consistent
with the ones in the illustrative Example V.B.2 although some
limited fluctuations are observed under medium delay. Thus,
these packet level ns-2 simulations demonstrate and are consis-
tent with the previous analytical and numerical results based on
fluid approximations.

VI. CONCLUSION

In this paper, we have investigated the local stability and
robustness of a DT nonlinear congestion control algorithm,
first at a single bottleneck link and then under general network
topologies. For symmetric users at a single bottleneck link,
we have obtained necessary and sufficient conditions for the
local stability of the system. For more general scenarios, which
include multiple bottleneck links and nonsymmetric users, an-
alytic derivation is not possible and, hence, we have resorted to
randomized algorithms and made use of both Monte Carlo and
quasi-Monte Carlo methods. Specifically, we have used Halton,
Niederreiter, and Sobol sequences as quasi-random sequences
in addition to uniform random distributions created using stan-
dard pseudorandom number generators. As the quasi-random
number generator implementations that we have obtained from
various resources have dimension restrictions, we have used
Monte Carlo methods for the analysis of systems with higher
dimensions, corresponding to higher number of users.

This paper reveals that randomized algorithms provide exten-
sive insight into local stability of congestion control algorithms
which are inherently nonlinear. Furthermore, one can obtain ac-
curate results on stability margins even with a small number of
samples. One reason for this is that the linearized system has

relatively simple stability boundaries in the parameter space as
indicated by the analytical results we have obtained.

The robustness of the linearized system with respect to ca-
pacity at the bottleneck link and user parameters is investigated
in two different parameter spaces, and . The results
are similar (though not identical), as to be expected due to the
fact that each parameter space is a nonlinear transformation of
the other one as given by the equations of the equilibrium state.
As the actual probabilistic distribution of user parameters is un-
known, both analyzes give important, independent insights into
the robustness of the system. The simulation results for the mul-
tiple bottleneck link case are similar to the ones for the single
bottleneck link case. In these simulations, we have investigated
robustness of the system under various topologies and the inter-
action between system parameters and the routing matrix. We
have also demonstrated the results obtained through packet level
ns-2 simulations and studied the effect of model assumptions to
realistic implementations.

We have observed in Section V that under a given network
topology, the nonlinear system is locally stable only for a spe-
cific range of values for the parameters, , and . The rela-
tionship between these parameters can also be interpreted from a
network and congestion control perspective. We see that the rel-
ative magnitudes of utility parameter and feedback (pricing)
parameter plays a significant role in determining system sta-
bility. For a given capacity , if the parameter is relatively
high corresponding to aggressive user demand or pricing term

is relatively low then each case leads to instability due to in-
effective feedback in the system. The variations in capacity
can be interpreted in a similar way as very low capacity mag-
nifies the effect of or user demand while very high capacity
decreases the magnitude of the pricing term which is inversely
proportional to capacity. On the other hand, the parameter is
proportional to and inversely proportional to and, hence,
more sensitive in capacity variations than changes in .
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