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Abstract

This paper1 addresses a family of robustness problems in which the system under consideration is affected by interval matrix uncertainty.
The main contribution of the paper is a new vertex result that drastically reduces the number of extreme realizations required to check robust
feasibility. This vertex result allows one to solve, in a deterministic way and without introducing conservatism, the corresponding robustness
problem for small and medium size problems. For example, consider quadratic stability of an autonomous nx dimensional system. In this case,

instead of checking 2n2
x vertices, we show that it suffices to check 22nx specially constructed systems. This solution is still exponential, but this is

not surprising because the problem is NP-hard. Finally, vertex extensions to multiaffine interval families and some sufficient conditions (in LMI
form) for robust feasibility are presented. Some illustrative examples are also given.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The analysis and synthesis problems in the presence of
interval uncertainty have received the attention of the robust
control community for decades. Different approaches and
results can be found depending on how the uncertainty
is modelled. For example, the celebrated Kharitonov’s
theorem [9] is one of the results that can be used to study
stability when interval uncertainty affects the coefficients of a
given characteristic polynomial (see [1] for details).

A different approach is required if the interval uncertainty
affects the nx × nx matrix A that defines the state space
dynamics of a linear system ẋ = Ax . More specifically,
consider the problem of checking robust nonsingularity of A
when each component of A lies in a given interval. In [15]
it is shown that it suffices to check a subset of the vertex
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set consisting of 4n extreme matrices. Robust nonsingularity
is closely related to robust stability, see e.g. [1] for details,
by means of Kronecker operations, but, Kronecker operations
do not preserve the interval matrix structure. Therefore, for
robust stability, unfortunately, vertex results hold only for very
special classes of systems which include the case of symmetric
matrices. In this particular case, in [7] it is shown that the
number of extreme matrices required to check robust stability
is 2nx −1. See also [16] for a related result involving an interval
Sylvester equation.

A more general class of analysis problems can be addressed
using the µ framework [20]. Robustness analysis of a system
subject to interval matrix uncertainty can be often formulated
as an equivalent µ problem. As stated in [19], purely real µ

problems, involving real matrices and only scalar uncertainties,
can be solved exactly checking the vertices of the interval
matrix. In [18] it is shown that the so-called full structured µ

problem involving an n ×n interval real matrix can be solved in
an exact way checking 4n vertices. That is, the results presented
in [18] allow one to reduce the number of required vertices from
2n2

to 22n .
Consider now the problem of checking the robust

satisfaction of a linear matrix inequality involving interval
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matrices. Since this problem has been shown to be NP-hard
(see [12] and [13]), one cannot expect to find a polynomial-
time exact solution. If the interval uncertainty enters in an affine
way in the linear matrix inequality, then it suffices to check the
vertices of the interval matrix. As the number of vertices of an
n × n matrix is 2n2

, checking all the vertices is possible only
when n is very small.

An established line of research deals with the computation
of the gain matrix K such that the closed loop system ẋ =

(A + BK )x is robustly stable and admits a common quadratic
Lyapunov function for all the possible realizations of the
uncertainty. It is well known, however, that the “common
quadratic Lyapunov function” approach is conservative
and parameterized Lyapunov functions may reduce this
conservatism, see [1]. If the matrices A and B (of dimensions
nx × nx and nx × nu respectively) are affected by unstructured
interval uncertainty, the synthesis problem can be formulated
as a convex problem with 2nx (nx +nu) constraints (one for
each extreme realization of the uncertainty) see, e.g. [4,8].
The main drawback of this approach is that the number
of constraints is not manageable even for relatively small
problems. For example, if nx = 5 and nu = 2 then the number
of constraints is 235 > 1010.

When the number of constraints is too large to obtain an
exact deterministic solution, different strategies can be adopted.
For example, using scaling variables it is possible to bound the
effect of the interval uncertainty. In this case, an approximate
conservative solution to the problem is obtained [2,3]. Another
possibility is to resort to randomized algorithms [14,17], which
are proved to converge with probability one to a feasible
solution (in case the robust synthesis problem is feasible).
See [5] and [11] for examples of randomized algorithms to
compute a solution to uncertain linear matrix inequalities.

The main contribution of this paper is a new vertex result that
drastically reduces the number of extreme realizations required
to solve the synthesis problem under interval uncertainty.
For example, with the results of this paper only 22nx +nu =

212
= 4096 systems are required to solve the aforementioned

synthesis problem. This means that when the dimension of the
system is relatively small, an exact deterministic solution can be
obtained in a reasonable computational time. A generalization
of this result is also provided showing in particular that an
extreme point result holds for multiaffine interval families.
Some sufficient (conservative) results to further reduce the
computational time required to check if a given matrix
inequality is satisfied for the family of interval matrices are also
given in this paper.

The paper is organized as follows: Section 2 presents some
notation. The problem statement is introduced in Section 3.
The generality of the proposed robust feasibility problem is
illustrated by means of motivating examples in Section 4. The
new vertex result is presented in Section 5. This result is
generalized to multiaffine families in Section 6. Some sufficient
conditions for robust feasibility are given in Section 7. Three
numerical examples are given in Section 8. The paper draws to
a close in Section 9.

2. Notation

• Given vector x , x(i) denotes its i-th component.
• Given a matrix H , H(i, j) denotes its i j-th component.
• Rn×m denotes the space of n × m real matrices.
• Given matrix R ∈ Rn×m , with all its entries nonnegative,

and matrix X̃ , Ic(R, X̃) denotes the following interval matrix
centered at X̃ : Ic(R, X̃) = {X : |X (i, j) − X̃(i, j)| ≤

R(i, j), ∀i, j}. In this context, R is usually referred to as
“perturbation scale matrix”.

• Given matrix R ∈ Rn×m , with all its entries non negative,
Ic(R) denotes the following interval matrix (centered at X̃ =

0) : I(R) = Ic(R, 0) = {X : |X (i, j)| ≤ R(i, j), ∀i, j}.
• The set of n×n diagonal matrices with diagonal entries equal

to 1 or −1 is denoted with ∆n . That is, ∆n = {∆ ∈ Rn×n
:

∆ is diagonal and ∆(i, i) ∈ {−1, 1}, i = 1, . . . , n}.
• Given a matrix (vector) H , |H | denotes the matrix (vector)

composed by the absolute values of the entries of matrix
(vector) H .

• Given a symmetric matrix A, λmax(A) denotes its largest
eigenvalue and λmin(A) its smallest eigenvalue; A > 0
denotes that A is positive definite and A < 0 that it is
negative definite; given symmetric matrices A and B, A > B
denotes that A − B is positive definite.

• The Euclidean norm is denoted as ‖ · ‖2.

3. Problem statement

As will be shown in the next section by means of some
illustrative examples, the robust constraints appearing in the
robustness problems with interval uncertainty can often be
rewritten in the general form

F(X) + G + GT
+ H Q(X) + QT (X)H T < 0,

∀G ∈ I(M), ∀H ∈ I(N ) (1)

where:

(i) X = {X1, X2, . . . , X t } denotes a subset of the matrix
decision variables of the synthesis problem.

(ii) F(X) ∈ Rn×n is a symmetric matrix that is not affected
by uncertainty. It is assumed that this matrix is an affine
function of the decision variables X = {X1, X2, . . . , X t }.

(iii) Q(X) ∈ Rm×n is an affine matrix function of the decision
variables X = {X1, X2, . . . , X t } that is not affected by
uncertainty.

(iv) M ∈ Rn×n and N ∈ Rn×m are perturbation scale matrices
having all elements non negative.

4. Motivating examples

The robustness problems addressed in this paper encompass
a large number of robust control synthesis problems. This is
illustrated in this section by means of three classical problems:
quadratic stabilization of continuous interval systems, L2 gain
minimization in the presence of interval matrix uncertainty and
receding horizon control of uncertain discrete-time systems, see
e.g. [4,10].
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4.1. Quadratic stabilization of continuous-time interval
systems

Consider the system ẋ = Ax + Bu where A ∈ Rnx ×nx

and B ∈ Rnx ×nu are uncertain matrices in the classes A =

Ic(RA, Ã) and B = Ic(RB, B̃), respectively. The synthesis
problem consists in finding P = PT > 0 and the feedback
control law u = K x such that the closed loop system ẋ =

(A + BK )x satisfies

d
dt

(xT Px) < 0, ∀x 6= 0, ∀A ∈ A, ∀B ∈ B.

In particular, a lower bound on the decay rate

lim
t→∞

eαt
‖x(t)‖2 = 0

is guaranteed if

d
dt

(xT Px) < −2αxT Px, ∀x 6= 0, ∀A ∈ A, ∀B ∈ B.

This is immediately rewritten as the matrix inequality

P(A + BK ) + (A + BK )T P < −2αP, ∀A ∈ A, ∀B ∈ B.

Pre and post-multiplying the previous matrix inequality by P−1

and making the change of variable W = P−1, Y = K P−1 it
results that the synthesis problem is rewritten as the following
generalized eigenvalue problem

max
W,Y,α

α

s.t. W > 0

AW + W AT
+ BY + Y T BT

+ 2αW < 0,

∀A ∈ A, ∀B ∈ B.

Note that the robust constraint of this problem can be
rewritten in the general form given by Eq. (1) by means of the
following assignments

X1 = W, X2 = Y, t = 2, M = 0, N =
[
RA RB

]
,

F(X) = ÃX1 + X1 ÃT
+ B̃ X2 + X T

2 B̃T
+ 2αX1,

Q(X) =

[
X1
X2

]
.

4.2. L2 gain minimization

Consider the following system{
ẋ = Ax + Bu + Ew

y = Cx + Du

where A ∈ Rnx ×nx , B ∈ Rnx ×nu , E ∈ Rnx ×nw , C ∈ Rny×nx

and D ∈ Rny×nu are affected by interval uncertainty. That is,

A ∈ A = Ic(RA, Ã)

B ∈ B = Ic(RB, B̃)

E ∈ E = Ic(RE , Ẽ)

C ∈ C = Ic(RC , C̃)

D ∈ D = Ic(RD, D̃).

The objective of the synthesis problem is to find a state
feedback gain K such that the L2 gain of the system is
minimized. It is well known (see, for example [4]) that the L2
gain of the closed loop uncertain system is bounded by γ if
there exists P = PT > 0 such that for all possible realizations
of the uncertain matrices

d
dt

(xT Px) + yT y − γ 2wT w ≤ 0.

Setting W = P−1 and Y = K W , the synthesis problem can
be immediately rewritten as

min
W>0,Y,γ

γ 2

s.t.

AW + W AT
+ BY + Y T BT

∗ ∗

ET
−γ 2I ∗

CW + DY 0 −I

 < 0

∀A ∈ A, ∀B ∈ B, ∀C ∈ C, ∀D ∈ D

where each entry “∗” denotes the submatrix required to force
the symmetry of the matrix. The robust constraint appearing in
this L2 gain minimization problem can also be rewritten in the
general form given in Eq. (1). This is achieved by means of the
following assignments

X1 = W, X2 = Y, t = 2,

F(X) =

 ÃX1 + X1 ÃT
+ B̃ X2 + X T

2 B̃T
∗ ∗

ẼT
−γ 2I ∗

C̃ X1 + D̃X2 0 −I


M =

 0 ∗ ∗

RT
E 0 ∗

0 0 0

 , N =

RA RB
0 0

RC RD

 ,

Q(X) =

[
X1 0 0
X2 0 0

]
.

4.3. Receding horizon control of uncertain discrete-time
systems

Consider the time-varying discrete-time system xk+1 =

Ak xk + Bkuk where Ak ∈ Rnx ×nx and Bk ∈ Rnx ×nu are
uncertain matrices in the classes A = Ic(RA, Ã) and B =

Ic(RB, B̃) respectively for every sample time k. Given an initial
condition x0, semidefinite positive matrices Q and R, and the
control policy uk = K xk , the value of the cost function

J =

∞∑
k=0

xT
k Qxk + uT

k Ruk

depends on the particular realization of the uncertain matrices
Ak , Bk , k = 0, . . . ,∞. It is well known that if P = PT > 0
and

(Ak + Bk K )T P(Ak + Bk K ) − P < −Q − K T RK ,

∀k ≥ 0 (2)

then an upper bound of the worst-case value of the cost function
is given by xT

0 Px0 (see, for example, [10]). Since Ak ∈ A and
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Bk ∈ B for all k ≥ 0, the robust constraint (2) is satisfied if

(A + BK )T P(A + BK ) − P < −Q − K T RK ,

∀A ∈ A, ∀B ∈ B. (3)

Therefore, the synthesis problem consists in obtaining P > 0
and K such that xT

0 Px0 is minimized under the robust
constraint given by Eq. (3). Note that it is easy to consider
additional constraints, expressed in LMI form, and which are
not affected by uncertainty, to deal with bounds on both the
state vector xk and the control input uk [10].

This control strategy is applied in a receding horizon
scheme. That is, at each sample time k, the matrices P > 0
and K are obtained such that xT

k Pxk is minimized under the
robust constraint (3). Once this synthesis problem is solved,
the control law uk = K xk is applied to the system. Denoting
W = P−1 and Y = K W , the synthesis problem at sample time
k can be rewritten as

min
W>0,Y,γ

γ

s.t.


W W AT

+ Y T BT W Q
1
2 Y T R

1
2

∗ W 0 0
∗ ∗ I 0
∗ ∗ ∗ I

 > 0,

∀A ∈ A, ∀B ∈ B[
γ xT

k
xk W

]
> 0.

The robust constraint appearing in this synthesis problem is
rewritten in the general form given by Eq. (1) by means of the
following assignments: X1 = W , X2 = Y , t = 2,

F(X) = −


X1 X1 ÃT

+ X T
2 B̃T X1 Q

1
2 X T

2 R
1
2

∗ X1 0 0
∗ ∗ I 0
∗ ∗ ∗ I

 ,

M = 0, N =


0 0

RA RB
0 0
0 0

 ,

Q(X) = −

[
X1 0 0 0
X2 0 0 0

]
.

(4)

5. Main result: From rectangular interval matrices to
binary diagonal matrices

As previously discussed, due to the interval nature of the
uncertainty and the affine parametric dependence, it suffices to
check all the extreme realizations of the uncertainty. Therefore,
in an interval matrix with n rows and m columns in which all
the entries of the perturbation scale matrix R are different from
zero, 2nm extreme matrices should be considered. However,
from the computational point of view, the problem with this
vertex approach is that to check feasibility of the robust
constraint (1), a huge number of extreme realizations is
generally required.

In particular, we observe that in the robust constraint
(1), there are 2n(n+m) vertex matrices. Hence, for the
quadratic stabilization problem this leads to 2nx (nx +nu) extreme
realizations, whereas for the L2 gain problem it leads to
2nx (nx +nu+nw)+ny(nx +nu) vertices. Consider, for example, a
small dimensional L2 gain design problem with nx = 3, nu =

nw = ny = 1. In this case, 219 > 105 extreme realizations
should be considered. On the other hand, for a medium size
problem with nx = 5, nu = nw = ny = 2, the number
of required extreme realizations is 259 > 1017. Clearly, more
powerful extreme point results are required in order to solve
(in an exact way) the robust synthesis problem for small and
medium size problems.

In this section it is shown that it suffices to consider binary
diagonal matrices instead of interval rectangular ones. The
main advantage of reformulating the robust synthesis problem
by means of uncertain diagonal matrices is the following:
the number of uncertain parameters required to describe the
uncertain matrices grows linearly (instead of quadratically)
with the dimension of the uncertain matrices. This implies that
the number of extreme realizations of the uncertainty required
to check if the robust constraints are satisfied is drastically
reduced.

The following theorem constitutes the main contribution
of the paper and states that it suffices to consider binary
diagonal matrices when addressing the general robust constraint
given in Eq. (1). In turn this leads to a major computational
improvement as shown in Corollary 1 at the end of this section.

Theorem 1. Given the matrices F and Q, consider the robust
constraint

F + G + GT
+ H Q + QT H T < 0,

∀G ∈ I(M), ∀H ∈ I(N ) (5)

where M ∈ Rn×n and N ∈ Rn×m . Then, the robust constraint
(5) is satisfied if and only if

F + ∆0(M + MT )∆0 + ∆0 N∆1 Q + QT ∆1 N T ∆0 < 0,

∀∆0 ∈ ∆n, ∀∆1 ∈ ∆m . (6)

Proof. • Robust constraint (5) implies (6):
Suppose that the robust constraint (5) is satisfied. It will

be shown that the constraint (6) is satisfied for every ∆0 ∈

∆n , ∆1 ∈ ∆m . Denote Ḡ = ∆0 M∆0, H̄ = ∆0 N∆1. From
the definition of ∆n and ∆m it results that

|Ḡ(i, j)| = |∆0(i, i)M(i, j)∆0( j, j)| = M(i, j), ∀i, j;

|H̄(i, j)| = |∆0(i, i)N (i, j)∆1( j, j)| = N (i, j), ∀i, j.

Therefore, it is inferred that Ḡ = ∆0 M∆0 ∈ I(M) and
H̄ = ∆0 N∆1 ∈ I(N ). From this, and the assumption that
Eq. (5) is satisfied we obtain

F + ∆0(M + MT )∆0 + ∆0 N∆1 Q + QT ∆1 N T ∆0

= F + Ḡ + ḠT
+ H̄ Q + QT H̄ T < 0.

• Robust constraint (6) implies (5):
Suppose now that robust constraint (6) is satisfied. We

proceed by contradiction. If robust constraint (5) is not



Author's personal copy

478 T. Alamo et al. / Systems & Control Letters 57 (2008) 474–481

satisfied, there exists 0 6= v ∈ Rn and Ḡ ∈ I(M) and
H̄ ∈ I(N ) such that

vT
(

F + Ḡ + ḠT
+ H̄ Q + QT H̄ T

)
v ≥ 0. (7)

Now note that

vT
(

F + Ḡ + ḠT
+ H̄ Q + QT H̄ T

)
v

≤ vT Fv + |vT Ḡv| + |vT ḠT v| + |vT H̄ Qv|

+ |vT QT H̄ T v|

≤ vT Fv + |v|
T
|Ḡ||v| + |v|

T
|Ḡ|

T
|v|

+ |v|
T
|H̄ ||Qv| + |Qv|

T
|H̄ |

T
|v|

≤ vT Fv + |v|
T M |v| + |v|

T MT
|v|

+ |v|
T N |Qv| + |Qv|

T N T
|v|.

Since the elements of the diagonals of matrices ∆n and ∆m
are equal to 1 or to −1, given v, there exists ∆̄0 ∈ ∆n such
that |v| = ∆̄0v. On the other hand, given Qv there exists
∆̄1 ∈ ∆m such that ∆̄1 Qv = |Qv|. This yields

vT Fv + |v|
T M |v| + |v|

T MT
|v| + |v|

T N |Qv|

+ |Qv|
T N T

|v|

= vT Fv + vT ∆̄0 M∆̄0v + vT ∆̄0 MT ∆̄0v

+ vT ∆̄0 N∆̄1 Qv + vT QT ∆̄1 N T ∆̄0v

= vT (F + ∆̄0 M∆̄0 + ∆̄0 MT ∆̄0

+ ∆̄0 N∆̄1 Q + QT ∆̄1 N T ∆̄0)v < 0.

The last inequality is due to the fact that the robust constraint
(6) is assumed to be satisfied. Thus, it has been inferred that

vT
(

F + Ḡ + ḠT
+ H̄ Q + QT H̄ T

)
v < 0

which contradicts Eq. (7). �

The following corollary states that, in order to check if the
robust constraint (5) is satisfied, it suffices to evaluate 2n+m

matrices.

Corollary 1. To check if the robust constraint (5) is satisfied, it
suffices to check the matrix inequality (6) for each of the 2n+m

different pairs (∆0,∆1) that satisfy ∆0 ∈ ∆n , ∆1 ∈ ∆m .

Proof. The result stems directly from Theorem 1 and the
fact that ∆n and ∆m have 2n and 2m different elements,
respectively. �

Recall that for small and medium size L2 gain synthesis
problems discussed at the beginning of this section, 219 > 105

and 259 > 1017 extreme realizations are required to check the
robust constraint (5) if full interval matrices are considered.
Applying Corollary 1, these numbers drop to 29

= 512 and
216

= 65,536 extreme realizations, respectively. It is clear
that in order to solve a semi-definite programming problem
with 65,536 constraints, specialized algorithms have to be
considered (for example, cutting plane or bundle algorithms).
The point here is that the vertex result presented in this
section allows one to solve in an exact way (by means of
appropriate algorithms) the robust synthesis problem for small
and medium size problems. To solve problems of higher

dimensions, approximate approaches must be considered. This
is due to the inherent NP-hardness nature of this class of
robustness problems [12,13]. In Section 7 we present some
sufficient conditions that allow one to solve problems of higher
dimensions. The price to pay is that the results might be
conservative.

6. Generalization to multiaffine interval matrix uncertainty

In this section we show that the results presented in the pre-
vious section can be easily generalized to other robustness prob-
lems with interval matrix uncertainty. In particular, in the next
theorem, we state a vertex result that applies when the uncer-
tain matrices enter in a multiaffine way into the robust con-
straints. This result in fact generalizes the paper [6] which holds
for quadratic stability. Multiaffine uncertainty structures are of
interest because they play a major role in control systems [1].

Theorem 2. Suppose that the matrix function
Ψ (G, H0, H1, . . . , Hp) can be rewritten as

Ψ(G, H0, H1, . . . , Hp)

= F0 + G + GT
+ H0 Q0 + QT

0 H T
0 +

p∏
i=1

(Fi + Ri Hi Qi )

+

(
p∏

i=1

(Fi + Ri Hi Qi )

)T

,

for appropriate constant matrices Fi , Qi , i = 0, . . . , p and Ri ,
i = 1, . . . , p. Consider now the robust constraint

Ψ(G, H0, H1, . . . , Hp) < 0, ∀G ∈ I (M), ∀Hi ∈ I (Ni ),

i = 0, . . . , p (8)

where M ∈ Rn0×n0 and Ni ∈ Rni ×mi , i = 0, . . . , p. Then the
robust constraint is satisfied if and only if

Ψ(∆l,0 M∆l,0,∆l,0 N0∆r,0, . . . ,∆l,p Np∆r,p) < 0

∀∆l,i ∈ ∆ni , ∆r,i ∈ ∆mi i = 0, . . . , p.

Proof. From the direct application of Theorem 1, it is inferred
that the robust constraint is satisfied if and only if

Ψ(∆l,0 M∆l,0,∆l,0 N0∆r,0, H1, . . . , Hp) < 0

∀∆l,0 ∈ ∆n0 , ∆r,0 ∈ ∆m0 , ∀Hi ∈ I (Ni ) i = 1, . . . , p.

Notice now that given j with 1 ≤ j ≤ p,

Ψ(∆l,0 M∆l,0,∆l,0 N0∆r,0, H1, . . . , Hp)

= F̂ j + F̂T
j + R̂ j H j Q̂ j + Q̂T

j H T
j R̂T

j ,

where matrices F̂ j , Q̂ j and R̂ j do not depend on H j . Using
now the same lines of the proof of Theorem 1, it can be proved
that

F̂ j + F̂T
j + R̂ j H j Q̂ j + Q̂T

j H T
j R̂T

j < 0

for all H j ∈ I (N j ) if and only if

F̂ j + F̂T
j + R̂ j∆l, j N j∆r, j Q̂ j + Q̂T

j ∆r, j N T
j ∆l, j R̂T

j < 0
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for all ∆l, j ∈ ∆n j and for all ∆r, j ∈ ∆m j . This means that
the robust constraint is satisfied for every H j ∈ I (N j ) if and
only if it is satisfied for every H j in {∆l, j N j∆r, j : ∆l, j ∈

∆n j ,∆r, j ∈ ∆m j }. This proves the result. �

This vertex result encompasses a rather large class
of robustness problems with multiaffine interval matrix
uncertainty. In fact, it can be shown that

pa∏
i=1

(F̃i + R̃i Hi Q̃i ) +

pa+pb∏
i=pa+1

(F̃i + R̃i Hi Q̃i )

can be rewritten as

pa+pb∏
i=1

(Fi + Ri Hi Qi )

for appropriate matrices Fi , Ri , and Qi , i = 1, . . . , pa + pb.
In order to evaluate the necessary and sufficient conditions

stated in Theorem 2, one can take advantage of the structure
of the particular robustness problem under study. For instance,
in some quadratic stabilization problems the matrices defining
the dynamics of the system are in companion form. Therefore,
the interval uncertainty does not affect all their components and
some rows of the corresponding perturbation scale matrix have
their elements equal to zero. In particular, if all the elements
in a row of a given perturbation scale matrix are zero, one can
use this fact to reduce by a factor of two the number of matrix
inequalities required for the robust constraint (see Section 8.3
for an illustrative example). Similar strategies can be adopted
in other situations to further reduce this number.

7. Some sufficient conditions

In this section a sufficient condition that avoids the vertex
enumeration corresponding to the sets ∆m is presented. This
sufficient condition takes into account only the 2n matrices of
the set ∆n . Later, and using this sufficient condition, another
sufficient condition that requires no vertex enumeration at all is
provided. The technical tool used in this section is the scaling
technique presented in [3]. Advantages of the results presented
here compared to [3] are discussed at the end of this section.

First, we present a (standard) lemma.

Lemma 1. Suppose that S ∈ Rm×m is a positive definite
diagonal matrix. Then

∆0 N∆1 Q + QT ∆1 N T ∆0 ≤ ∆0 N SN T ∆0 + QT S−1 Q,

∀∆0 ∈ ∆n, ∀∆1 ∈ ∆m .

Proof. We note that AAT
≥ 0, ∀A. Thus, we have

(∆0 N S
1
2 − QT ∆1S−

1
2 )(∆0 N S

1
2 − QT ∆1S−

1
2 )T

≥ 0.

Equivalently,

∆0 N SN T ∆0 + QT ∆1S−1∆1 Q − ∆0 N∆1 Q

− QT ∆1 N T ∆0 ≥ 0.

That is,

∆0 N∆1 Q + QT ∆1 N T ∆0

≤ ∆0 N SN T ∆0 + QT ∆1S−1∆1 Q

= ∆0 N SN T ∆0 + QT S−1 Q.

The last equality is due to the diagonal nature of S−1 and
the fact that the diagonal elements of ∆1 ∈ ∆m satisfy
∆1(i, i)∆1(i, i) = 1, i = 1, . . . , m. �

The following result should be considered as a preliminary
result required to prove Theorem 4, which is the main
contribution of this section.

Theorem 3. Consider the robust constraint

F + G + GT
+ H Q + QT H T < 0 ∀G ∈ I(M),

∀H ∈ I(N ) (9)

where M ∈ Rn×n and N ∈ Rn×m . The robust constraint (9) is
satisfied if there exists a diagonal matrix S ∈ Rm×m such that,
for every ∆0 ∈ ∆n , we have[

F + ∆0

(
M + MT

+ N SN T
)
∆0 QT

Q −S

]
< 0. (10)

Proof. From Eq. (10) we conclude that S is a positive definite
matrix. Applying Schur complement it results that (10) implies

F + ∆0

(
M + MT

+ N SN T
)
∆0 + QT S−1 Q < 0,

∀∆0 ∈ ∆n .

This inequality can be immediately rewritten as

F + ∆0(M + MT )∆0 + ∆0 N SN T ∆0 + QT S−1 Q < 0,

∀∆0 ∈ ∆n .

Applying Lemma 1, it follows that:

F + ∆0(M + MT )∆0 + ∆0 N∆1 Q + QT ∆1 N T ∆0 < 0,

∀∆0 ∈ ∆n, ∀∆1 ∈ ∆m .

As claimed in Theorem 1, this is equivalent to the robust
satisfaction of the constraint given by inequality (9). This
completes the proof. �

The next theorem shows how to address (in a conservative
way) the robust synthesis problem solving an LMI optimization
problem in which 2(n + m) scaling variables are added to the
original decision variables of the problem.

Theorem 4. Consider the robust constraint

F + G + GT
+ H Q + QT H T < 0 ∀G ∈ I(M),

∀H ∈ I(N ) (11)

where M ∈ Rn×n and N ∈ Rn×m . The robust constraint (11)
is satisfied if there exist diagonal matrices T ∈ Rn×n and
S ∈ Rm×m such that[

F + T QT

Q −S

]
< 0, (12)

M + MT
+ N SN T < T . (13)
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Proof. First, it is clear that ∆0T∆0 = T , therefore, Eq. (12)
implies[

F + ∆0T∆0 QT

Q −S

]
< 0, ∀∆0 ∈ ∆n .

Since M + MT
+ N SN T < T , from this equation we conclude

that, for every ∆0 ∈ ∆n[
M + ∆0

(
M + MT

+ N SN T
)
∆0 QT

Q −S

]
< 0.

As stated in Theorem 3, this last matrix inequality
guarantees that the robust constraint is satisfied. This completes
the proof. �

The main advantage of Theorem 4 with respect to the
sufficient conditions presented in [3] (Proposition 3.3 in
particular) is that the number of additional auxiliary decision
variables required in Theorem 4 is much smaller than the
number of uncertain parameters. Moreover, the size of the
matrices appearing in the obtained LMI is of the same order
of magnitude as those corresponding to a nominal synthesis
problem. For example, if the results presented in [3] are applied
to the robustness problem presented in this paper, then the
number of scaling variables would be equal to the number of
uncertain parameters n2

+nm and the dimension of the required
LMI would be the dimension of the original nominal problem
plus n2

+nm. However, it is worth remarking that if the scaling
technique of [3] is used to obtain a conservative bound on the
largest size of the interval uncertainty for which a given robust
LMI (of the class considered in this paper) is feasible, then the
obtained upper and lower bounds differ by a factor no larger
than π

2 .

8. Numerical results

In this section the theoretical results of this paper are applied
to the three motivating examples presented in Section 4. To
this end, three different interval systems have been chosen
randomly. The numerical results of this section have been
obtained with an Intel Pentium 4 at 1.8 GHz using the LMI
toolbox of Matlab.

8.1. Quadratic stabilization

Consider the uncertain system ẋ = Ax + Bu, where A ∈

A = {A : |A(i, j) − Ã(i, j)| ≤ 0.5, ∀i, j} and B ∈ B =

{B : |B(i, j) − B̃(i, j)| ≤ 0.5, ∀i, j} with

Ã =


0.810 7.251 −4.455 9.949 9.442
2.243 1.647 1.269 −8.428 4.475

−7.743 −1.024 −6.522 4.892 0.711
9.642 −5.950 −8.219 9.167 9.788
9.606 2.111 4.969 −4.605 0.935

 ,

B̃ =


−8.433 9.831
−6.545 −1.241
−1.954 −0.264
−4.204 8.997
−9.701 −5.270

 .

For this interval system, the robust quadratic stabilization
problem presented in Section 4.1 can be solved in an exact
deterministic way considering only 4,096 elements of the
interval family. This is a direct application of Theorem 1. The
corresponding generalized eigenvalue problem was solved in
275 seconds yielding the following optimal values for P and K :

K =

[
25.73 148.57 −73.50 −89.49 −45.56
97.41 618.69 −293.01 −407.59 −224.45

]
,

P =


0.82 4.65 −2.30 −2.93 −1.53
4.65 28.99 −14.06 −18.29 −9.94

−2.30 −14.06 6.99 8.60 4.59
−2.93 −18.29 8.60 12.38 6.91
−1.53 −9.94 4.59 6.91 4.01

 .

The obtained exact optimal value for α is 7.54. A conservative
value of α equal to 6.88 was obtained in 1.63 seconds using
Theorem 4.

8.2. L2 gain minimization

Consider now the robust L2 gain minimization problem
presented in Section 4.2. The values for matrices Ã, B̃, C̃, D̃
and Ẽ are

Ã =


−5.814 −5.042 6.728 −3.491 7.007
−0.886 3.687 4.486 8.265 9.696
−3.697 4.444 −8.452 3.811 −1.232
−0.166 −3.774 −5.688 −9.158 −4.198

8.933 −7.369 −3.917 7.432 1.949

 ,

B̃ =
[
−6.250 6.296 −2.336 1.017 −9.319

]T
,

C̃ =

[
−2.974 3.531 0.968 −0.644 −6.867

0 0 0 0 0

]
,

D̃ =

[
0

10

]
,

Ẽ =
[
8.185 5.415 −8.490 −7.554 0.644

]T
.

The perturbation scale matrices RA, RB , RC , RD and RE are
chosen of appropriate dimensions and with all their elements
equal to 0.2. In this case, the number of vertices of the interval
family is 247 > 1014. Theorem 1 guarantees that only 214

=

16,384 of these vertices are required to solve in an exact way
the robust L2 gain minimization problem. The corresponding
optimization problem was solved in 152 seconds. The obtained
optimal value for γ is 5.81 and matrices K and P are

K =
[
100.80 114.59 −83.90 301.85 266.55

]
,

P =


736.3 834.0 −609.4 2197.9 1930.8
834.0 1019.7 −703.0 2573.9 2255.3

−609.4 −703.0 510.4 −1837.7 −1616.5
2197.9 2573.9 −1837.7 6664.0 5849.3
1930.8 2255.3 −1616.5 5849.3 5154.1

 .

A conservative value of γ equal to 6.41 was obtained in 0.23
seconds using the sufficient condition provided in Theorem 4.
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8.3. Receding horizon control of uncertain discrete-time
systems

Consider now the robust receding horizon problem
presented in Section 4.3. The numerical values for the matrices
Ã and B̃ are

Ã =


0.68 0.49 0.98 0.32
0.59 0.90 0.18 0.47
0.07 0.77 0.14 0.34
0.88 0.66 0.76 0.01

 , B̃ =


0.34
0.25
1.00
0.91

 .

The perturbation scale matrices RA, RB are chosen of
appropriate dimensions and with all their elements equal to
0.05. In this case, the number of vertices of the interval family
is 220. The direct application of Theorem 1 yields that 218

vertices have to be considered. However, since the matrix
N (see Eq. (4)) has only five rows different from zero, this
number of vertices is further reduced to 210

= 1024. Given
the initial condition x0 = [0.3498 0.2781 0.0929 0.2405]

T ,
the corresponding optimization problem was solved in 59.44
seconds. The obtained optimal value for γ is 2.8985 and the
obtained control action to be applied at sample time k = 0
is u0 = −0.8181. A conservative value of γ equal to 3.1321
and the control action u0 = −0.8124 were obtained in 0.6810
seconds using the sufficient condition provided in Theorem 4.
As this numerical example illustrates, the sufficient conditions
presented in this paper broaden the class of interval systems to
which a robust receding horizon control is applicable in real
time.

9. Conclusions

In this paper a new vertex result dealing with robust
satisfaction of a linear matrix inequality affected by interval
uncertainty is presented. The main contribution of the paper is
to drastically reduce the number of vertices required to check
robust feasibility of a candidate problem solution. This allows
us to considerably broaden the family of plants affected by
interval uncertainty for which the robust synthesis problem can
be solved in a deterministic way. The paper also provides some
sufficient conditions that can be used when the size of the
interval matrices is large and an exact deterministic solution
cannot be obtained using the new vertex result. The results are
illustrated by means of three motivating examples and related
numerical results.
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